2017 International Workshop on Complex Systems and Networks (IWCSN)
December 8-10, 2017, Doha, Qatar

Expert Recommendation in OSS Projects Based on
Knowledge Embedding

Chenbo Fu, Mingming Zhou, and Qi Xuan
College of Information Engineering
Zhejiang University of Technology

Hangzhou 310023, China
Email: xuanqi@zjut.edu.cn

Abstract—Modern Open Source Software (OSS) projects de-
pend on the globally-distributed and synchronized software
development. The online collaboration promotes more and more
developers to join in OSS projects, while on the other hand,
integrating new developers with teams is challenging and pivotal
to the success of a project. In this paper, we propose a novel
expert recommendation method, based on knowledge embedding,
that realizes real-time recommendation for working developers.
To capture structural information of source files in call graph,
we use node2vec algorithm to convert file entities within projects
into knowledge mappings within low-dimensional space, based
on which we further propose four features to capture the
work status and social relationship of developers. We then
design a recommender system using random forest method to
recommend appropriate experts for the developers. Experiments
on 20 Apache OSS projects show that, compared with the baseline
methods, our approach behaves significantly better in terms of
a series of performance metrics.

Keywords—expert recommendation; open source software;
knowledge embedding; node2vec; machine learning.

1. INTRODUCTION

The rapid growth of software development practices in
recent years has been a bonanza for technology diffusion and
commercial advantage. These outstanding success made in
Open Source Software (OSS) has mostly involved the co-
operation pattern of social-technical interaction and globally-
distributed fashion.

Specifically, Apache Software Foundation (ASF) [1],
Github [2], and Stack Overflow (SO) [3] are classic com-
munities in software engineering domain. An ASF project
involves a software development team aiming at creating a ro-
bust, commercial-grade, multi-functional, and freely-available
source code implementation. Typically, the project is jointly
managed by a group of volunteers, located around the world,
who contribute ideas, code, and documentation. The working
product that is contributed by committing to files would be
recorded in a Git repository. In addition, hundreds of users
communicate, plan, and develop the software through the
Internet. As well, the history of communication information
would be stored in a particular mailing list.

The synchronous development, as a kind of social syn-
chrony [4], [5] in software engineering, is reported as highly
associated with effective productivity and coordination: during

978-1-5386-1890-5/17/$31.00 ©2017 IEEE

149

Hong-Xiang Hu
College of Mathematics
Hangzhou Dianzi University
Hangzhou 310018, China
Email: kukunan911 @hotmail.com

the co-commit time, the project size often grows faster with
less coding effort than other time [1]. From the perspective of
developers themselves, Xuan et al. [6] found that developers
with fair balance between work and talk tend to produce as
much work as those putting more emphasis on work or talk.
Most interestingly, the fair balance for developers is important
to sustain OSS projects. Moreover, unlike traditional code
ownership heuristics based on the authorship of code changes,
Thongtanunam et al. [7] found that code review activities
become more and more important to be a reference stan-
dard of code ownership and a judge criterion of developer’s
contribution in Modern Code Review (MCR). Their statistic
result shows that 67% to 86% of developers only contribute
to modules by reviewing code changes, 18% to 50% of these
review-only contributors are documented core developers of
the studied systems.

However, finding a list of appropriate developers to ex-
change knowledge and experiences and seek help is always
not straightforward. Rubin ef al. [8] gave an illustration that
one participant, working in a large organization, mentioned
that he has a problem to find the experts with experiences
relevant to what he is trying to develop. They also reported that
time differences, language differences, and the lack of physical
access make coordinating people in different time zones less
productive. An empirical investigation by Thongtanunam et
al. [9] shows that 4% to 30% of reviews have code-reviewer
assignment problem in OSS projects, these reviews with
code-reviewer assignment problem require 12 days longer to
approve code changes.

Expert recommendation is widely studied in the area of
software engineering. Bayati et al. [10] proposed a security
expert recommender for social Q&A Websites, e.g., SO, that
applies security ontology, glossary, programming language
and location information to find the experts in appropriate
local area who answered to related posts with the highest
answer count and vote value. Naguib er al. [11] employed
Latent Dirichlet Allocation (LDA) to cluster bug reports into
topics to be embedded as activity profiles for users. For a
new bug report, the model can assign recommendation(s)
according to the related activity profiles. Shokripour et al. [12]
utilized a noun extraction process on several information
sources to determine bug location information and a simple

term weighting scheme to provide a bug report assignment
recommendation. Yu et al. [13] combined technical semantic
similarity with social comment relation network analyzing to
recommend highly relevant code-reviewers for GitHub pull-
requests. Steinmacher et al. [14] considered source code
artifacts, issue tracker, mail threads and workspace information
to calculate the current technical and social interest score, and
then proposed a recommendation system to help newcomers
find the most adequate support from other people in OSS
projects. Balachandran et al. [15] introduced a reviewer recom-
mendation tool, namely ReviewBot, that uses historical records
of changed lines within source files to assign appropriate
reviewers for VMware projects. Patanamon et al. [9] proposed
a file location-based code-reviewer recommendation approach
for modern code review, called RevFinder, that leverage file
path similarity of relevant review requests. Rahman et al. [16]
proposed a recommendation technique, namely CORRECT,
to identify code-reviewers using cosine similarity of tokens
(shared libraries and adopted technologies) from relevant re-
quests in GitHub.

In this paper, we propose a novel approach for realizing real-
time expert recommendation for developers in ASF projects.
Inspired by Grover et al. [17], we first adopt a feature
representation model for converting source file entities into
knowledge mappings in low-dimensional space to capture
file- and function-level information; then we look up relevant
knowledge mappings of source files to be integrated as a
working state of one developer at the commit time; finally
we conduct recommendation system using machine learning
techniques to predict appropriate experts for this developer.

The rest of paper is organized as follows: In Sec. II,
we conduct an exploratory study on ASF project dataset.
Then, we propose a novel recommendation system based on
knowledge embedding in Sec. III. The evaluation metrics and
the comparison with baseline methods are shown in Sec. IV
and Sec. V, respectively. Finally, the paper is discussed and
concluded in Sec. VI

II. DataseT
A. Data Description

We use the same dataset as Xuan et al. [1], [6], [18], and
mainly focus on 20 ASF projects. In each project, the data
provides commit activities and email communication records
for developers. For each commit, we employ the developer
ID, the commit time, the source file ID. For each email
communication, we employ the sender ID, receiver ID and the
sending time. Note that the communication records where the
sender ID is the same as the receiver ID are removed, because
these records cannot be regarded as social interactions. We
assume receiver IDs are experts in our experiments.

B. Exploratory Study

Before we introduce our method, we first take a glance
at our data. In Fig. 1, we plot the proportion of technical
communications in each project, i.e., the proportion of emails
sent or received by code contributors, i.e., developers, over

xerces2_j
solr

pluto
openejb
ode

nutch
mahout
lucene
log4j

ivy

hive
harmony
hadoop_hdfs
derby

cxf’
cayenne
camel
axis2_java
ant

abdera

Project

0.00 0.25 0.50 0.75 1.00

Proportion

Fig. 1. The proportion of technical communications over all communications
in each project.

Class [l Developers | Email Contacts

xerces2_j
solr

pluto
openejb
ode

nutch
mahout
lucene
log4j

ivy

hive
harmony
hadoop_hdfs
derby

cxf’
cayenne
camel
axis2_java
ant

abdera

Project

0.00 0.25 0.50 0.75 1.00
Proportion

Fig. 2. The proportions of developers sent or received emails, (blue) over all
developers, and (green) over all email contacts, for each project.

all the emails in each project. It is shown that, such technical
communications occupy a large portion in all email communi-
cations, especially for cayenne, cxf, openejb, more than 95%
emails are sent or received by the developers. Furthermore,
we find that the developers who also sent or received emails
take up a large portion in all developers, but only occupy a
relatively small portion in all email contacts, in each project,
as shown in Fig. 2. This means that developers are used to
share knowledge and experience by email in these projects
and imply us that design of expert recommendation system
should consider not only the technical characteristics based
on the commits of developers on particular files but also the
social communication patterns between them and other users.

III. METHOD

The framework of this study is presented in Fig. 3. We
formulate our expert recommendation as a machine learning
problem, and solve it by three steps, i.e., file embedding, fea-
ture extraction, and machine learning. Specially, we first use

Fig. 3. The framework of our study.

node2vec method to learn the domain-specific file embeddings
from large numbers of source files in ASF projects. Then, we
propose four features to describe the behavioral pattern for
each developer. Finally, we use machine learning method to
establish a predicting model.

A. File Embedding

The traditional expert recommendation system only consider
the independent source file, however, the file-file relationships
also exhibit the significant influences on developer’s working
patterns, e.g., focus shifting pattern [18]. Thus, to better
describe the developer’s working patterns so as to design better
recommendation system, we should take file-file relationships
into consideration. Here, we use Doxygen tool [19] to gather
the call graphs of ASF projects, based on which we further
establish File Dependency Network (FDN). FDN is defined
as a weighted undirected graph G = (V, E, W), where nodes
represent source files, and two nodes v; and v; are linked if
there is a dependency relationship between the corresponding
source files, i.e., at least one function in file v; (or v;) calls
a function in file v; (or v;). The weight w;; of link represents
the total number of times that the functions in v; and those in
v; call each other.

Given the FDN, we next use the node2vec proposed by
Grover et al. [17] to capture the rich systematic and functional
features of source files in a project. node2vec is a new
algorithm for mapping nodes in a network to the feature
vectors in a low-dimensional space, preserving the neighbor-
hood information of these nodes. In our study, by utilizing
this method, we map the source files in the underlying call
graph to domain-specific file embedding. In particular, given
a source file v;, the node2vec algorithm seeks the optimization
of objective function which maximizes the log conditional
probability of neighborhood set Vy(v;) for a source file v;:

max), log P(Vy()lf(v),

v,eV

(M

where f is the mapping function from network representation
to feature representation, i.e., f : V — R4 and d is the di-
mension of feature space. With the assumptions of conditional
independence and symmetry on feature space, the objective
function can be simplified to:

Z log P(Vy(v)If(vi)

v;ieV
D D log Pulf(r)

Vi€V vy, €Vy(vi)
Z Z log exp(f(vn,) - f(v))
Soev exp(fv) - f@)’

vieV Vi, €V (Vi)

2)

where v, is the node in the neighborhood set Vi (v;). Calcula-
tion of Eq. (2) is very expensive in large network. To solve this
problem so as to improve the algorithm efficiency, node2vec

proposed a second order random walk sampling strategy with
a parameter g controlling the balance between Breadth-First
Sampling (BES) and Depth-First Sampling (DFS). In particu-
lar, starting from the source file v;, we simulate a random walk
with length /. Then the ith file in the walk path is generated
by the following distribution:

Tuxl/Z i (vy,vy) EE
P(ci = vilcioy = vy, cica = vy) = { 0 Otherwise
(3
where 7w, = a(v;,vy) - w,, is the unnormalized transition
probability, with the parameter
% if d(v;,vy) =0
a(v,vy) =< 1 ifdv,v) =1 4)
1
q

if d(v,vy) =2

wy, being the link weight between nodes v, and v,, and Z =
2w, Tux being the normalized constant. In Eq. (4), d(v;,v,) is
the shortest path between nodes v; and v,, p and g are called
return and in-out parameters, controlling the walk direction,
respectively. Here, we implement 10 random walks of the fixed
length [= 80 starting from every node in a call graph, both
p and g are set to 1. After sampling, the source files in the
call graph are mapped into node sequences. Feeding them into
skip-gram architecture with the objective function Eq. (2), we
finally obtain the file embedding vectors, with the dimension
set to 32.

The node2vec algorithm has the following two advantages.
First, it can be used to handle large-scale networks. It is
known that the Bag-of-words model [20], another popular
vector representation method, can transform the word to vector
representation, in terms of words frequency, and achieves
great successful in Natural Language Processing (NLP), but
it is of low efficiency when dealing with big data. By
comparison, using the second order random walk, node2vec
improves the search efficiency dramatically, and shows the
ability to handle large-scale networks. Second, node2vec uses
the local topological information of nodes, making the file
embedding vector capture some domain-specific character-
istics. This is similar to the semantics in NLP, and thus
node2vec may be useful in analogical reasoning tasks. For
instance, in Derby (a database management system), the
file named as LocalizedInput.java handles localized input by
calling the file utilMain.java used to run database, while
the file LocalizedOutput.java generates localized output by
calling the file Main.java used to parsing and controlling.
By mapping these files into file embedding vectors, we have
f(LocalizedInput.java)- f (utilMain.java)+ f(Main.java) is close
to f(LocalizedOutput.java). This suggests that the relationship-
s between source files can be indeed obtained by using basic
mathematical operations on file embedding vectors.

B. Feature Extraction

The commit and communication patterns of a developer
are essentially task-oriented [6], [21], and thus exhibit highly
dynamic characters. This fact suggests that we should consider

the temporal features of developers when designing the rec-
ommendation system. In this study, after mapping the source
files into file embedding vectors, we propose four features to
capture the work pattern of each developer, as following:
« Temporal Technical Feature (TTF)
Assume developer D; sent an email to an expert at time
t, then TTF for the developer is defined as the mean
value of committed files in file embedding representation
at commit time f;, which is closest to t:

D, fo,

veFi(t;)

TTF(1;) =)

|Fi(2)]
where F;(t;) is the set of source files committed by
developer D; at time f;, and the operator |-| represents the
size of a set.

Historical Technical Feature (HTF)

For developer D;, HTF is defined as the average TTF of
the developer by commit time ;.

1
HTFi(t) = ——) TTFi(7) - Ad., (6)
Nc(ti) ;
where N.(t;) is the number of commits by time #;. The

time decay factor is defined as:

Ad; = exp[—(t — 7)? /o], (7

where 7 is the commit time in history. In the present work,
the regularization factor is set as o = 7 (days).

As discussed in Sec. II, social activities should not be
ignored when designing expert recommendation system. Thus,
we proposed two social features as following:

« Temporal Social Feature (TSF)

For developer D;, TSF is defined as the average TTF of
the last Q users that D; had contacted through email by
time 7. It should be note that if the contacted user is
not a developer, his/her TTF is set to zero; and for each
contacted developer Dy, only the commit at the closest
time to ¢, denoted by #, is considered, satisfying #; < .
Thus, we have

1
TSFi(1) = — TTFx(%0), ()
Vil =,
where V; is the set of contacted users of D;.
. History Social Feature (HSF)
Simply replacing TTF by HTF, we get:
1
HSF;(t) = — HTF.(t). 9
(=15 D, HTF(w) ©)

il prev,
Here, for TSF and HSF, we always have |V;| = Q.

C. Machine Learning Model

After extracting the four features, we adopt the Random For-
est (RF) algorithm to design expert recommendation system.
Here, in each OSS project, we divide the data into a training
set and a test set in chronological order, containing 80% and
20% of the data, respectively. The RF model is generated
by R package randomForest, and the parameters are set to
ntree=500, mtry=11.

IV. PERFORMANCE METRICS

To evaluate our approach, we use accuracy, mean precision,
mean recall, mean FI1-score and mean reciprocal rank as the
performance metrics. The first four metrics are all based on
the top@k recommendation list. Let R be the set of all email
requests of experts in the test set and D be the set of ground
truth experts, we have:

« Top@k Accuracy
It is defined as the proportion of correct recommendations
among all the email requests in the test set:

_ 2rerisCorrect(r,Top@k)
- IR| ’

where isCorrect(r, Top@k) returns 1 if the email request
r of the expert as the ground truth is included in the top
k recommendation list, and returns O otherwise.

Top@k Mean Precision

For expert D; € D, the top@k precision is the propor-
tion of recommendations that correctly recommended D;
among all the recommendations including D;, which is
defined as:

ACC

(10)

Direr, 1sCorrect(r, Top@k)
[Top@k(i)|

where R; means the set of email requests of expert D; and

Top@k(i) is the number of all the Top @k recommenda-

tion lists, for all the test samples, that contain expert D;.
Then, the top@k mean precision is defined as:

PRE() = (11D

)

1
PRE= — Y PRE().
i 2

12)

Top@k Mean Recall

For expert D; € D, the top@k recall is the ratio of
recommendations that correctly recommended D; to the
number of email requests of D; in ground truth, which is
defined as:

2rer, isCorrect(r, Top@k)

REC(i) = (13)
IR
Then, the top@k mean recall is defined as:
1
REC = — REC(). (14)
P

D;eD

Top@k Mean F1-score
For expert D; € D, the Fl-score is the harmonic mean
of precision and recall, then the top@k mean F1-score is
defined as:

1 2 x PRE(i) x REC(7)

Fl= —
D &4 PRE() + REC(i)

15)

Mean Reciprocal Rank

For each email request of expert, denoted by r, we define
Reciprocal Rank (RR) as the multiplicative inverse of
the rank of the target expert in the recommendation list,
denoted by RR(r). If the target expert is not included
in the list, the corresponding RR(r) will be 0. The

mean reciprocal rank for all email requests thus can be
calculated by
1
MRR = — » RR(7). (16)
R] Z,,;
Based on these metrics, we evaluate the performance of our
method against several traditional recommendation methods.

V. EXPERIMENTS AND RESULTS
A. Traditional Recommendation Methods

Before the experiments, we first introduce two traditional
recommendation methods for comparison.

1) Collaborative Filtering (CF): The basic idea of CF is
grouping users or items according to similarity [22], [23].
COde Reviewer REcommendation based on Cross-project and
Technology experience (CORRECT) [16] is an improved
recommendation method used in software engineering, which
utilizes the developers’ experiences in Github to measure their
similarity.

Here, we focus on ASF projects and use the committed
source files to characterize the experience of a developer.
Assume developer D; sent an email request at time ¢, and
his/her latest commit, before time ¢, occurred at time #;, with
the set of committed source files denoted by F;(f;). We then
get the latest 7 email requests sent by developers before time
t, and for each of these email requests r sent by developer
Dj, we obtain the latest commit of the developer before this
email request. Suppose this commit occurred at time ¢;, the
similarity between D; and D; based on the two commits is
thus calculated by

Fi(t)) N Fy(t))
VIF@)l - AIF @)l

We thus can rank the receivers of the & email requests and then
recommend them as experts to developer D; according to the
similarity between D; and the sender of these email requests.
In our study, 4 is set to 5. In fact, we varied /& from 5 to 30,
and get the best performance when h = 5.

2) Random Walk based Context-aware Friend Recommen-
dation (RWCFR): RWCFR considers the current status of
a user and provide personalized recommendations in social
network [24]. In this study, we use the current commit and
communication patterns to represent the current status of a
developer. Specifically, assume developer D; send an email at
time ¢ and the latest commit, before time #, occurred at time
t;, then we construct the temporal status network of developer
D; according to the following relationships.

Sim(D;, D)) = 17

o Current Ego-File Relationship: Between developer D; and
the source files committed by D; at time ¢,.

Current Ego-Contact Relationship: Between developer D;
and the last ny email contacts of D; before time t.
Current Developer-File Relationship: Assume time t; is
the time for the last commit of developer D; in the
above contact list of D; before time ¢. Then the current
developer-file relationship are the relationship between

File4 | ..
Developer3
- Developer2
| File2
Files ~_
e : > Userl
: Filel |---| g g0 —
RN
Developerl User?2

Fig. 4. Temporal status network. There have three relationships: current ego-
file relationship (longdash line), current ego-contact relationship (solid line)
and current developer-file relationship (dotted line).

TABLE I
COMPARISON BETWEEN OUR APPROACH AND THE Two BASELINE METHODS.

| [AcC | PRE | REC Fl MRR
Our Approach || 0.5631 [0.3478 [0.3099 | 0.3278 | 0.4156
CF 04712 | 0.2361 | 0.2210 | 0.2283 | 03128
RWCFR 05202 | 0.2977 [0.2066 | 0.2439 | 03002

the source files in the last n; commits by time f; and
their submitters.

Considering developers, users and source files as nodes and
integrating the above relationships as links, we can get a
temporal status network for each developer, as shown in Fig. 4.
In our study, ny and ng are set to 5 and 15, respectively. In
fact, we varied ny from 10 to 50 and n; from 5 to 20, and get
the best performance when ny = 5, n, = 15. We then employ
the random walk starting from developer D; with the transition
probability proportional to the weight (repetitive relationship)
of the link, and the walk length is set to 100 times of network
size. We calculate the frequency of visited nodes in the walk
path, and the developer or user of higher frequency is more
likely to become an expert.

B. Comparison

We compare our approach against two baseline recommen-
dation methods: CF and RWCFR, on the five performance
metrics. As demonstrated in TABLE I, we find that the
improvement of our method over the two baseline methods
is apparently: compare with baseline methods, the Top@5
Accuracy (ACC), Top@5 Mean Precision (PRE), Top@5
Mean Recall (REC), Top@5 Mean Fl-score (F1) and Mean
Reciprocal Rank (MRR) are at least improved by 8.2%, 16.8%,
40.2%, 34.4% and 32.9%, respectively. Note that, for the two
social features, i.e.,TSF and HSF, in our approach, we set the
parameter Q = 7, meaning that only the most recent seven
contacts are considered when calculating these features. We
varied the value of Q and find Q = 7 is an appropriate value
to get reasonable performance.

0.66
0.56
0 0.46
Q
<0.36
0.26

0.16

TABLE II
THE PERFORMANCES OF OUR APPROACH WITH DIFFERENT PARAMETER ¢.

| [Acc PRE REC Fl MRR
q=0.25 || 0.5248 | 0.2926 | 0.2504 | 0.2699 | 0.3763

q=0.5 || 05247 | 0.2949 | 0.2521 | 0.2718 | 0.3750

p=1 q=1 0.5631 | 0.3478 | 0.3009 | 0.3278 | 0.4156
q=2 0.5272 | 02964 | 0.2553 | 0.2743 | 0.3781

q=4 0.5253 | 0.2900 | 0.2485 | 0.2677 | 0.3758

7 10 1 3

5 S 7 10
Top N Top N

8- TTF HTF --A- TSF -©- HSF —o— All

Fig. 5. The performance metrics, including ACC, PRE, REC and F1, based
on each and all the four features, as functions of recommendation list length.

Besides, we also investigate the recommendation perfor-
mance of our method just using one of the four features.
As shown in Fig. 5, we find that the two features associated
to history, i.e., HTF and HSF, outperform the other two in
general. This phenomenon implies that, by comparison, the
historical features HTF and HSF, can provide more compre-
hensive information to describe the status of developer. In
addition, we also find that when applying all the four features
for recommendation, the performance metrics have significant
improvements over the single feature.

For the performance metrics PRE, REC and F1, HTF
behaves best, probably because the task-driven essence of
these OSS projects makes technical features more appropriate
to characterize appropriate experts. On the other hand, HSF
shows its advantage in ACC which mostly depends on the
number of correct recommendations. As we mentioned in
Sec. II, developers are used to share knowledge and experience
by email. Although this part of developers only occupy small
proportion of users, they are still more likely to be recom-
mended as experts.

VI. DiscussioNs AND CONCLUSION

The present work is a novel extension to the previous
studies of expert recommendation. Prior to our work, most
of the studies on experts recommendation had been focus on
independent source file, and omitted the file-file relationship.
The current study, while considering the file-file relationship,
we construct call graph of source file and mapping this
relationship into 32 dimension space, which capturing the file-
and function- level information. Considering the characteristics
of online cooperation in ASF projects, the proposed features

in our work capture the social and working status of developer,
and performs well in the design of recommendation system.

It is worth to noting that, in Sec. III, we have mentioned that
the parameter p and ¢ are important parameters in node2vec.
However, compare to p, the parameter g have more clearer
physical meanings, i.e., ¢ > 1, the random walk is approxi-
mately BFS behavior and ¢ < 1 is DFS-like exploration. In
this work, beside ¢ = 1, we also explore different ¢ values
on the 20 OSS projects, e.g., ¢ = 0.25,0.5,2,4. As shown in
Tab. II, the results show that ¢ = 1 performs best under our
evaluation metrics.

In summary, we adopt the node2vec method to mapping
the source file in call graph to file embedding vector and
propose four new features, including TTF, HTF, TSF, and
HSF, to capture the work status and social relationship of
developers. By utilizing RF algorithm, we design a new expert
recommendation approach in OSS projects. The experiments
validate the effectiveness of our method. Furthermore, when
the recommendation list increases, HTF dominates the other
three features under the performance metrics PRE, REC and
F1. Our work highlights that the network theory integrated
with the machine learning methods can improve the predicting
performance, and thus is necessary and important complement
to the current recommendation methods.

ACKNOWLEDGMENT

This work is partially supported by National Natural Sci-
ence Foundation of China (11505153, 61572439, 61273212),
Zhejiang Provincial Natural Science Foundation of China
(LQ15A050002), and the Control Science and Engineering
Discipline Prior Discipline of Zhejiang Province (20170706).

REFERENCES

[1] Q. Xuan and V. Filkov, “Building it together: Synchronous development
in 0ss,” in Proceedings of the 36th International Conference on Software
Engineering. ACM, 2014, pp. 222-233.

[2] B. Vasilescu, K. Blincoe, Q. Xuan, C. Casalnuovo, D. Damian, P. De-
vanbu, and V. Filkov, “The sky is not the limit: multitasking across
github projects,” in Proceedings of the 38th International Conference
on Software Engineering. ACM, 2016, pp. 994-1005.

[3] B. Vasilescu, V. Filkov, and A. Serebrenik, “Stackoverflow and github:
Associations between software development and crowdsourced knowl-
edge,” in Social computing (SocialCom), 2013 international conference
on. IEEE, 2013, pp. 188-195.

[4] Q. Xuan, Z. Zhang, C. Fu, H. Hu, and V. Filkov, “Social synchrony on
complex networks,” IEEE Transactions on Cybernetics, 2017.

[5] Q. Xuan and V. Filkov, “Synchrony in social groups and its benefits,”
in Handbook of Human Computation. Springer, 2013, pp. 791-802.

[6] Q. Xuan, P. Devanbu, and V. Filkov, “Converging work-talk patterns in
online task-oriented communities,” PloS one, vol. 11, no. 5, p. e0154324,
2016.

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida, “Revisiting
code ownership and its relationship with software quality in the scope
of modern code review,” in Proceedings of the 38th International
Conference on Software Engineering. ACM, 2016, pp. 1039-1050.

J. Rubin and M. Rinard, “The challenges of staying together while mov-
ing fast: An exploratory study,” in Proceedings of the 38th International
Conference on Software Engineering. ACM, 2016, pp. 982-993.

P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Tida,
and K.-i. Matsumoto, “Who should review my code? a file location-
based code-reviewer recommendation approach for modern code re-
view,” in Software Analysis, Evolution and Reengineering (SANER),
2015 IEEE 22nd International Conference on. 1EEE, 2015, pp. 141-
150.

S. Bayati, “Security expert recommender in software engineering,” in
Proceedings of the 38th International Conference on Software Engi-
neering Companion. ACM, 2016, pp. 719-721.

H. Naguib, N. Narayan, B. Briigge, and D. Helal, “Bug report assignee
recommendation using activity profiles,” in Mining Software Reposito-
ries (MSR), 2013 10th IEEE Working Conference on. 1EEE, 2013, pp.
22-30.

R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “Why so
complicated? simple term filtering and weighting for location-based bug
report assignment recommendation,” in Proceedings of the 10th Working
Conference on Mining Software Repositories. 1EEE Press, 2013, pp.
2-11.

Y. Yu, H. Wang, G. Yin, and C. X. Ling, “Reviewer recommender
of pull-requests in github,” in Software Maintenance and Evolution
(ICSME), 2014 IEEE International Conference on. IEEE, 2014, pp.
609-612.

I. Steinmacher, I. S. Wiese, and M. A. Gerosa, “Recommending mentors
to software project newcomers,” in Proceedings of the Third Interna-
tional Workshop on Recommendation Systems for Software Engineering.
IEEE Press, 2012, pp. 63-67.

V. Balachandran, “Reducing human effort and improving quality in
peer code reviews using automatic static analysis and reviewer recom-
mendation,” in Software Engineering (ICSE), 2013 35th International
Conference on. 1EEE, 2013, pp. 931-940.

M. M. Rahman, C. K. Roy, and J. A. Collins, “Correct: code reviewer
recommendation in github based on cross-project and technology expe-
rience,” in Proceedings of the 38th International Conference on Software
Engineering Companion. ACM, 2016, pp. 222-231.

A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2016,
pp. 855-864.

Q. Xuan, A. Okano, P. Devanbu, and V. Filkov, “Focus-shifting patterns
of oss developers and their congruence with call graphs,” in ACM Sigsoft
International Symposium on Foundations of Software Engineering, 2014,
pp. 401-412.

C. Mao, “Structure visualization and analysis for software dependence
network,” in Granular Computing (GrC), 2011 IEEE International
Conference on. 1EEE, 2011, pp. 439-444.

Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp. 146—
162, 1954.

Q. Xuan, H. Fang, C. Fu, and V. Filkov, “Temporal motifs reveal
collaboration patterns in online task-oriented networks,” Physical Review
E, vol. 91, no. 5, p. 052813, 2015.

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, “Grou-
plens: an open architecture for collaborative filtering of netnews,” in
Proceedings of the 1994 ACM conference on Computer supported
cooperative work. ACM, 1994, pp. 175-186.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabo-
rative filtering recommendation algorithms,” in Proceedings of the 10th
international conference on World Wide Web. ACM, 2001, pp. 285-295.
H. Bagci and P. Karagoz, “Context-aware friend recommendation for
location based social networks using random walk,” in Proceedings
of the 25th International Conference Companion on World Wide Web.
International World Wide Web Conferences Steering Committee, 2016,
pp- 531-536.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

